Archives

  • 2022-08
  • 2022-07
  • 2022-06
  • 2022-05
  • 2022-04
  • 2021-03
  • 2020-08
  • 2020-07
  • 2020-03
  • 2019-11
  • 2019-10
  • 2019-09
  • 2019-08
  • 2019-07
  • br In order to survive

    2022-07-06


    In order to survive under stressful conditions within tumor such as hypoxia and/or nutrient deprivation or oxidative stress, cancer cells frequently exploit autophagy (Kenific and Debnath, 2015). Ad-ditionally, tumor cells could benefit from autophagy for adaptation to metastasis for withstanding the environmental stress they face during the several steps of metastasis including migration into the systemic circulation, adherence to the vessel walls, extravasation and coloniza-tion (J. Su et al., 2015, Z. Su et al., 2015). Thus, recycling of cyto-plasmic materials by autophagy provides continuous supply of energy as well as essential ingredients for cancer cells to survive (J. Su et al., 2015, Z. Su et al., 2015) and promotes metastatic reocurrence of tumors (Vera-Ramirez et al., 2018).
    2. Molecular mechanisms of autophagy
    Autophagic process is initiated by the formation of double-mem-brane vesicles known as autophagosomes. Various cargos are engulfed into autophagosome and autophagosome eventually fuses with lyso-somes that forms autolysosomes. (Lamb et al., 2013). Engulfed mate-rials were degraded by the action of lysosomal hydrolases and newly generated building blocks (e.g., amino acids from protein degradation) are transferred back to cytosol for reuse (Fig. 1). A series of stimuli, including amino Necrosulfonamide deprivation, serum starvation and growth factor deprivation, hypoxia, exposure to various chemicals and stress condi-tions are capable of activating autophagy.
    Genetic studies in yeast provided initial discoveries of autophagy-related (ATG) genes and enlightened the details of molecular signaling pathway of autophagic process (Nakatogawa et al., 2007). The autop-hagic pathway can be divided into several different phases: Initiation, nucleation, maturation, fusion and degradation (Fig. 1).
    The target of rapamycin, TOR (mTOR in mammals), is an evolu-tionarily conserved serine/threonine kinase responsible for conveying a number of autophagy stimulating signals. In mammals, mTOR exists as two different complexes: mTOR complex1 (mTORC1) and mTOR complex2 (mTORC2). mTOR complexes constitute a critical node for the integration of signaling pathways that regulate cellular energy homeostasis by coordinating anabolic and catabolic processes (Kroemer et al., 2010). PKB-AKT pathway can activate mTORC1 and suppresses autophagy (Dan et al., 2014; Zalckvar et al., 2009) (Fig. 1A). In con-trast, autophagy is activated by another kinase, AMP-activated protein kinase (AMPK), which has crucial role in sensing cellular energy and ATP levels (Garcia and Shaw, 2017; Xiao et al., 2011). Following de-crease in ATP, AMPK becomes activated through direct interaction with ADP or ATP resulting a conformational change. AMPK activation is also controlled by the two upstream kinases: LKB1 and calcium/calmodulin-dependent protein kinase kinase-β (CaMKKβ) (Hawley et al., 2005; Shaw et al., 2004). There has been cross-regulation between AMPK and mTOR activity. Low energy status activates AMPK, whereas this  European Journal of Pharmaceutical Sciences 134 (2019) 116–137
    activation leads inhibition of mTOR due to phosphorylation of TSC2 and RAPTOR (Gwinn et al., 2008; Inoki et al., 2003).
    Under nutrient-rich conditions, mTORC1 complex suppresses au-tophagy by inactivation of ULK1/2 complex, which composed of ULK1 or ULK2 kinase, ATG13, FIP200 and ATG101. In response to nutrient deprivation, ULK1/2 complex is activated by dissociation of mTORC1 which in turn activates autophagy through class III phosphatidylinositol 3-kinase (PI3K) complex (Chen and Klionsky, 2011; Hosokawa et al., 2009).
    A class III PI3K complex is mainly responsible for the nucleation of the autophagic membranes. Several proteins such as VPS34, Beclin-1, AMBRA1 and mATG9 were identified as novel regulator proteins in phagophore formation (Feng et al., 2016; Mehrpour et al., 2010; Papinski and Kraft, 2014; Park et al., 2016; Petherick et al., 2015; Russell et al., 2013). Beclin-1 is one of the key protein in membrane nucleation and its interaction with BCL2 inhibits autophagy (Fig. 1B). Conversely, disruption of this interaction allows Beclin-1 to bind with lipid kinase VPS34 and promote membrane nucleation (Pattingre et al., 2005). Alternatively, Beclin-1 differentially modulates membrane for-mation through interaction with different mediators such as UVRAG (Liang et al., 2008), RUBICON, ATG14L (Matsunaga et al., 2009), AMBRA1 (Yazdankhah et al., 2014) and VMP1 (Molejon et al., 2013a, 2013b). VPS34-mediated enzymatic generation of phosphatidylinositol 3-phosphate (PtdIns3P) provides a platform for phosphatidylinositol 3-phosphate (PI3P)-binding domain-containing autophagy proteins, in-cluding WIPI1–4 and DFCP1 (Mauthe et al., 2011; Mercer et al., 2018).