• 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • br Garc a Vicente AM Castrej n S


    [26] García Vicente AM, Castrejón ÁS, Relea Calatayud F, Muñoz AP, León Martín AA, López-Muñiz IC, Del Mar Muñoz Sánchez M, Cordero García JM, and Becerra Nakayo EM (2012). 18F-FDG retention index and biologic prognostic parameters in breast cancer. Clin Nucl Med 37(5), 460–466.
    [27] Groheux D, Biard L, Lehmann-Che J, Teixeira L, Bouhidel FA, Poirot B, Bertheau P, Merlet P, Espié M, and Resche-Rigon M, et al (2018). Tumor SB203580 assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in triple negative breast cancer. Eur J Nucl Med Mol Imaging 45(8), 1279–1288. [28] Humbert O, Berriolo-Riedinger A, Cochet A, Gauthier M, Charon-Barra C, Guiu S, Desmoulins I, Toubeau M, Dygai-Cochet I, and Coutant C, et al (2014). Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using (18)F-FDG PET in luminal HER2-negative breast cancer. Eur J Nucl Med Mol Imaging 41(3), 416–427.
    [29] Ikenaga N, Otomo N, Toyofuku A, Ueda Y, Toyoda K, Hayashi T, Nishikawa K, and Tanaka M (2007). Standardized uptake values for breast carcinomas assessed by fluorodeoxyglucose-positron emission tomography correlate with prognostic factors. Am Surg 73(11), 1151–1157.
    [30] Jacobs MA, Ouwerkerk R, Wolff AC, Gabrielson E, Warzecha H, Jeter S,
    Bluemke DA, Wahl R, and Stearns V (2011). Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res Treat 128(1), 119–126.
    [31] Jena A, Taneja S, Singh A, Negi P, Sarin R, Das PK, and Singhal M (2017). Reliability of 18F-FDG PET Metabolic Parameters Derived Using Simultaneous PET/MRI and Correlation With Prognostic Factors of Invasive Ductal Carcinoma: A Feasibility Study. AJR Am J Roentgenol 209(3), 662–670. [32] Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, Coombes RC, and Aboagye EO (2005). Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F] fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21), 10104–10112.
    [34] Koolen BB, Vrancken Peeters MJ, Wesseling J, Lips EH, Vogel WV, Aukema TS, van Werkhoven E, Gilhuijs KG, Rodenhuis S, and Rutgers EJ, et al (2012). Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 39(12), 1830–1838. [35] Kostakoglu L, Duan F, Idowu MO, Jolles PR, Bear HD, Muzi M, Cormack J, Muzi JP, Pryma DA, and Specht JM, et al (2015). A Phase II Study of 3'-Deoxy-3'-18F-Fluorothymidine PET in the Assessment of Early Response of Breast Cancer to Neoadjuvant Chemotherapy: Results from ACRIN 6688. J Nucl Med 56(11), 1681–1689.
    [36] Kurland BF, Gadi VK, Specht JM, Allison KH, Livingston RB, Rodler ET, Peterson LM, Schubert EK, Chai X, and Mankoff DA, et al (2012). Feasibility study of FDG PET as an indicator of early response to aromatase inhibitors and trastuzumab in a heterogeneous group of breast cancer patients. EJNMMI Res 2(1), 34.
    [37] Marti-Climent JM, Dominguez-Prado I, Garcia-Velloso MJ, Boni V, Peñuelas I, Toledo I, and Richter JA (2014). [18F]fluorothymidine-positron emission tomography in patients with locally advanced breast cancer under bevacizumab treatment: usefulness of different quantitative methods of tumor proliferation. 
    [38] Nishimukai A, Inoue N, Kira A, Takeda M, Morimoto K, Araki K, Kitajima K, Watanabe T, Hirota S, and Katagiri T, et al (2017). Tumor size and proliferative marker geminin rather than Ki67 expression levels significantly associated with maximum uptake of 18F-deoxyglucose levels on positron emission tomography for breast cancers. PLoS One 12(9)e0184508.
    [41] Soussan M, Orlhac F, Boubaya M, Zelek L, Ziol M, Eder V, and Buvat I (2014). Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS One 9(4)e94017. [42] Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A, and Schnall M (2010). Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 12(6), 657–662. [43] Tőkés T, Szentmártoni G, Torgyík L, Somlai K, Kulka J, Lengyel Z, Györke T, and Dank M (2015). Complexity of Response Evaluation During Primary Systemic Therapy of Breast Cancer: Scoring Systems and Beyond-Preliminary Results. Anticancer Res 35(9), 5063–5072.
    [46] Yang Z, Sun Y, Xue J, Yao Z, Xu J, Cheng J, Shi W, Zhu B, Zhang Y, and Zhang Y (2013). Can positron emission tomography/computed tomography with the dual tracers fluorine-18 fluoroestradiol and fluorodeoxyglucose predict neoad-juvant chemotherapy response of breast cancer?–A pilot study. PLoS One 8(10) e78192.